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Impedance and Polarization-Ratio Transformations by

a Graphical Method Using the Isometric Circles®

E. FOLKE BOLINDERT

Summary—The isometric circles for the direct and inverse linear
fractional transformations can be used for transformations of imped-
ances and polarization ratios. In the loxodromic case an inversion is
performed in the isometric circle of the direct transformation, fol-
lowed by a reflection in the symmetry line of the two circles, and a
rotation around the origin of the isometric circle of the inverse trans-
formation. In the nonloxodromic case only the first two operations
have to be applied. Three illustrative examples are given: the first
shows the transformation of the right half of the complex impedance
plane into the unit circle (Smith Chart); the second gives a circular
geometric proof of the Weissfloch fransformer theorem; the third
shows an example of cascading, lossless, two terminal-pair networks.

INTRODUCTION

N THE SOLUTION of microwave transmission
I[ problems, impedance transformations are usually
carried out either in the complex impedance (ad-
mittance) plane or in the complex reflection coefficient
plane. If notations are introduced in accordance with
Fig. 1, the input voltage and current are given in terms
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Fig. 1—An arbitrary two terminal-pair network,

of the output voltage and current by the transforma-
tion equation

i

v’ V + oI
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I' =¢V+4dI

or in matrix notation by

()-C() @

In a bilateral, two terminal-pair network the determi-
nant of the transformation matrix is identically equal
to unity:

ad — be = 1, (3)
If we let
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we obtain
, aZ + b

—cZ—{—d}

ad — bc = 1. (5)

This is a linear fractional transformation (also called
homographic or bilinear) between the impedances Z
and Z’.

The properties of transformation (5) are well
known.!? The properties that characterize transforma-
tions and lead to their classification are usually the in-
variants. This transformation (5) which conformally
transforms the entire complex plane into itself, is charac-
terized by the invariance of the cross ratio, the fixed
points, and the isometric circles. The first two of these
have found application in the microwave field but the
last one seems to have been completely neglected. In
this introductory paper it will be shown that the iso-
metric circles are useful and convenient. The method
will be applied to some specific examples.

TuE IsoMETRIC CIRCLES

To find the complete locus of points in the neighbor-
hood of which lengths are unaltered in magnitude by
the transformation (§), it is only necessary to study
the derivative?

az’ 1

E=m} ad — bc = 1. (6)

The desired locus is clearly the circle
leZz+d|l =1, ¢%0 (7

which is called the isometric circle of the direct trans-

formation. Eq. (6) shows that lengths are increased in

magnitude within the circle and decreased in magnitude

without the circle.

If we solve (5) for Z we get the inverse transforma-
tion

—dZ'+b

= e

ad — bc =1 8
Z — a ®)

which has the corresponding isometric circle
|cZ —a| = 1. (9)

The isometric circle of the direct transformation, Cy,
has its center at Oy= —(d/c¢) and radius R,= 1/[ c’ : the
isometric circle of the inverse transformation has its
center at O;=a/c and the same radius.

' K. Knopp, “Elemente der Funktionentheorie,” Sammlung
Géschen, Band 1109, Berlin; 1949.

. 2L. R. Ford, “Automorphic Functions,” 2nd ed., Chelsea Pub-
lishing Co., New York, N.Y.; 1951.
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THE RELATIONSHIP BETWEEN THE [SOMETRIC B
CIrRCLES AND THE FIXED PoINTs (atd) -4
OF THE TRANSFORMATION

2¢c

The points that are unchanged by transformation (5),
the fixed points, are easily obtained by letting Z'=2Z,
and solving the equation

Z?— (e —d)Z — b= 0. (10)
The roots are
a—d+/la+dt—4

{2 = ;» ad—be=1. (11)
2¢

At this point, it is helpful to review the classification
of different types of transformation, which can be
found in works on the theory of functions.!+?

If a+d is real and |a+d| >2, (11) has two real roots.
A pure stretching is obtained and the transformation is
called kyperbolic.

If a+d is real and |a+d| =2, (11) has one root (or Fig. 2—The hyperbolic case.
two coalescing roots). A pure translation is obtained
and the transformation is called parabolic.

If a+d is real and Ia—l—d <2, (11) has two complex L
conjugate roots. A pure rotation is obtained and the
transformation is called elliptic. Cd

If, finally, a+d is complex, (11) has two complex
roots. A combined stretching and rotation is obtained
and the transformation, which can be split into a hyper-
bolic transformation followed by an elliptic one, or — 04
vice versa, is called loxodromic.

In accordance with the results of the previous section
the distance between the centers of the two isometric
circles is [(a +d) /cl, while the sum of the two radii is
2/ [c] Therefore, if we follow the classification given 0;
above, we get the hyperbolic case if the two circles are
external: the parabolic case, if they are tangent: and \
the elliptic case, if they intersect. (See Figs. 2-4.) In Ci \
the loxodromic transformation each circle may have any
relation to the other. The positions of the fixed points
in relation to the isometric circles can now be obtained
easily from (11). The fixed points are marked as crosses
in Figs. 2, 3, and 4.

Fig. 3—The parabolic case.

TrHE GrAPHICAL METHOD

Ma+d)%-a \
2c

In the theory of functions (5) is usually divided in

the {ollowing way:
1

a c?

7= I ad — bc = 1. (12)
¢
Z4—
c

The following operations, suggested by (12}, are then
usually performed in the complex Z plane (see Fig. 5
on the following page):
1) a translation, Zi=Z-(d/c);
2) a complex inversion, Z]Z2=1/| c] 2,
3) a rotation around the origin through the angle
—2¢, giving Zs; Fig. 4—The elliptic case.
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Fig. 5—Graphical interpretation of the linear
fractional transformation.

4) a projection through the origin (a rotation around
the origin through the angle w), giving Z;
5) a translation, Z'=(a/c)+Z,.
If we now draw, as in Fig. 5, the two isometric circles
Csand C, that have the same radius R,=1/|¢| and the
centers Oq=—(d/c) and 0;=a/c, the transformation
Z—Z' can be simplified and the following operations
performed: An inversion in the isometric circle C; of the
direct transformation, giving Zr; a reflection in the
symmetry line L of the two circles, giving Zrr; and a
rotation around the center O; of the isometric circle of
the inverse transformation through an angle —2¢.
From Fig. 5 it follows immediately that
V=0¢— ¢ (13)
or

e+ d

4

a+d—|¢,. (14)

Thus in the general loxodromic case the transformation
(5) can be obtained by an inversion in the isometric
circle of the direct transformation, followed by a re-
flection in the symmetry line L, and, finally, a rotation
around the center of the isometric circle of the inverse
transformation through an angle —2 arg (¢+d). In the
nonloxodromic cases, when a--d is real, only the first
two operations have to be applied; the same result is
obtained by a reflection in L followed by an inversion in
the isometric circle of the inverse transformation. This
theorem was proved by Ford,? but he followed a differ-
ent line of thought in his proof. He then used the iso-
metric circle to study fundamental regions belonging to
linear groups in the theory of automorphic functions.
In network theory graphical inversion methods have
been used for symmetric networks, as for example, by
Konig * An interesting graphical interpretation of (5)

2 H. Kénig, “Uber die Abhangigkeit des Scheinwiderstandes eines
symmetrischen Vierpols von der Belastung, Helv. Phys. Acta, vol. 4,
pp. 281-289; 1931.
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was introduced by Feldtkeller* who bases his method on
the positions of the so-called oscillation impedances
(Schwingwiderstinde) which are defined as the roots of
the equation

aZ +b
7 - +

T Z+d

(15)

This method, however, is restricted to linear, symmetric
networks (¢ =d).

APPLICATIONS

Transformation of the Right Huolf of the Complex Im-
pedance Plane in the Unit Circle (Smith Chart)

In order to fulfill the condition in (3), that ad —bc=1,
the well-known formula for transforming the right half
of the complex impedance plane in the unit circle, has
to be written in the following way:

Z 1

2 V2 aZ+b

T = v v = * i aed—bc=1. (16)

Z N 1 Z 4+ d

V2 V2
Thus, referring to Fig. 6,
b
z
>R

L

Fig. 6—Transformation of the right half of the complex
impedance plane into the unit circle.

d
Od='—'———=-—1
¢
a
0,=—=1 (17)
¢
R. =2

a4+ d = /2 = real,

The transformation is clearly nonloxodromic and
elliptic, since a4 is real and the isometric circles inter-

4 R, Feldtkeller, “Einftihrung in die Vierpoltheorie der elektri-
schen Nachrichtentechnik,” S. Hirzel Verlag, Leipzig; 1948.
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sect. The fixed points are +j. Thus I' is simply ob-
tained from an arbitrary Z by inverting in C; and re-
flecting in L, the imaginary axis. The imaginary axis is
mapped on the unit circle; the right half plane falls in-
side the circle. The constant—R and constant—X
lines are transformed in two sets of orthogonal circles
through the point +41. The diagram inside the unit
circle is the familiar Smith Chart with T' defined as the
reflection coefficient. An inverse transformation T'—Z
is simply obtained by inverting in C; and reflecting in L.
If the different planes are stereographically mapped on
a Riemann sphere, the transformation constitutes a
90°-rotation around an axis through the fixed points.

The transformation between the Z plane and the I
plane mentioned above was recently treated by de
Buhr.® He used the C; circle as the inversion circle but
he did not realize that this circle is one of the isometric
circles; nor did he see that his graphical construction is
a special case of a more general one.

A New Proof of the Weissfloch Transformer Theorem for
Lossless Two Terminal-Pasr Networks

Weissfloch’s transformer theorem states that for a
given frequency any lossless two terminal-pair network
can be converted into an ideal transformer by coupling
specific lengths of homogeneous transmission lines to
each side of the network. The theorem was originally
proved by Weissfloch® in the complex impedance plane.
A proof in the complex reflection coefficient plane was
recently given by Weissfloch” and by Lueg.® It was also
proved graphically by Van Slooten,? who used the Cay-
ley-Klein diagram (Van Slooten calls it “Cayley-dia-
gram” or “C-diagram”). A new, extremely simple, proof
will now be given by means of the isometric circles.

Any impedance transformation through a lossless
two terminal-pair network leaves the imaginary axis in-
variant in the complex plane and the unit circle in-
variant in the complex reflection coefficient plane. All
transformations of this kind that have a common fixed
circle the interior of which is transformed into itself,
are said to belong to a properly discontinuous group
called Fuchsian.? The fixed circle mentioned is called
the principal circle. One theorem? states that the iso-
metric circles of the transformations of a Fuchsian
group are orthogonal to the principal circle. In Fig. 7
the lossless network is represented by the isometric
circles C; and €y, both cutting the principal circle per-

5 J. de Buhr, “Eine neue Methode zur Bearbeitung linearer Vier-
pole,” FTZ, pp. 200-204; April, 1955.

6 A Weissfloch, “Ein Transformationssatz iiber verlustlose Vier-
pole und seine Anwendung auf die experimentelle Untersuchung
von Dezimeter—und Zentimeterwellen—Schaltungen,” Hochfr. u.
Elak., vol. 60, pp. 67-73; September, 1942.

7 A. Weissfloch, “Kreisgeometrische Vierpoltheorie und ihre
Bedeutung fiir Messtechnik und Schaltungstheorie des Dezimeter—
und Zentimeterwellengebietes,” Hockfr. u. Elak., vol. 61, pp. 100-123;
1943,

8 H, Lueg, “Uber die Transformationseigenschaften verlust-
loser Vierpole zwischen homogenen Leitungen und ein kreisgeometris-
cher Beweis des Weissfloch-schen Transformatorsatzes,” AEU, vol.
7, pp. 478-48%; 1953.

9V. Van Slooten, “Meetkundige Beschouwingen in Verband met
de Theorte der Electrische Vierpolen,” Thesis, Delft, 1946.
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Fig. 7—The isometric circles of an arbitrary, lossless,
two terminal-pair network.

pendicularly. The network is elliptic, since the circles
intersect. The fixed points are marked as crosses. If the
circles are separated, the fixed points will coalesce in
the tangential case and then continue along the princi-
pal circle in the external case. These are the parabolic
and the hyperbolic cases. Since the ideal transformer
has its fixed points at +1, we shall try to find a method
for moving the fixed points of Fig. 7*? to these positions.

A transformation by means of a lossless, homogeneous
transmission line constitutes a rotation around the ori-
gin in the I' plane. The isometric circles are straight
1ines through the origin. With the notations of Fig. 8

_'_Tw_—t— A T ‘i——):;f'—f—
e — - L
__|_ﬂ__}_ ¢ A _*__4_1'_._*_
r' L, r, r

Fig. 8—An arbitrary, lossless, two terminal-pair network between
two homogeneous, lossless transmission lines.

we can write

Iy =¢7 _ (18)

O e B ET)
cr,+ 4’

I’ = [yeiv (20)

The arbitrary lossless two terminal-pair network has the
centers of its isometric circles at Oy= —(4/C) and O,
= A/C, both having the radius R,=1/| C|. Egs. (18) and
(19) give

Ae 1D 4 Cetitein)

Cei@ID] 4 Aetiteln)

I'y =

(21)

having isometric-circle centers at Oy’ = —(4/C)e?® and
0.’ =A/C with radii R.. Thus the isometric circle of the
direct transformation is rotated through an angle 4 ¢,
while the isometric circle of the inverse transformation
is invariant.

10 Figs. 7 and 9 should be reflected, so that +1—>F1.
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Eqgs. (19) and (20) give
,_ Ae=iWIDT, - CeiwIn
CetitWD Ty + Agtithi2)

(22)

having isometric-circle centers at Q' =—A4/C and 0;"’
= (A4 /C)e~#* with radii R,. Thus the isometric circle of the
direct transformation is invariant, while the isometric
circle of the inverse transformation is rotated through
an angle —y.

The transmission lines clearly move the fixed points
of Fig. 7 to the points +1. The lengths of the trans-
mission lines are A¢/4m and N\y/4w, where A is the wave-
length. Thus an ideal transformer is obtained and the
Weissfloch transformer theorem is proved. If the ideal
transformer is represented by

Z'=kZ (23)

it can easily be proved that the connection between the
radius R, and the impedance transformation ratio % is
2
R, =
Vi —
VE
To illustrate this proof given above, a transformation of
an arbitrary reflection coefficient T', representing, for
the sake of simplicity, a reactance, through the ideal
transformer is shown in Fig. 9. Here the transformations

(24)

Ci
T'-PLANE

Ci,y

-+ Cd

nf-e

Ci,¢
Cd,TRANSF.

Lo, Ly
1 = 2
r 2

Cd,¢

Ca,p

Fig. 9—A circular geometric proof of the Weissfloch transformer
theorem using the isometric circles.

performed by the transmission line of length N¢/4w, the
arbitrary, lossless network, and the transmission line of
length My/4m, are shown to give the same reflection
coefficient I'" as the one obtained by a transformation
through the ideal transformer.

Cascading of a Set of Equal Lossless Two Terminal-
Pair Networks

In Fig. 10 an arbitrary, lossless, two terminal-pair
network is represented by the isometric circles Cy and
C;in the I'" plane. An arbitrary reactance corresponding
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to the point I' on the unit circle is transformed in I'.
If another network exactly equal to the first one is
coupled in series, the new reflection coefficient I'g is ob-
tained at the input by the same operations, inverting in
Cq and reflecting in L, as were performed before. For a
set of equal networks the reflection coefficients T'y, T,
T, Ty, » - - are obtained. It is seen in Fig. 10 that the
transformations correspond to a (non-Euclidean) rota-
tion around the fixed point, which checks with the fact
that all transformations are elliptic. Similar construc-
tions can easily be performed in the parabolic and the
hyperbolic cases.

I'-PLANE

L

Fig. 10—Transformation through a set of equal, lossless, two
terminal-pair networks.

Besides the use of the isometric circle method for im-
pedance transformations, as shown above, the method
can also be applied to transformation of polarization
ratios.™
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