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Impedance and Polarization-Ratio Transformations by

a Graphical Method Using the Isometric Circles*
E. FOLKE BOLINDERt

Summary—The isometric circles for the direct and inverse linear
fractional transformations can be used for transformations of imped-

ances and polarization ratios. In the Ioxodromic case an inversion is

performed in the isometric circle of the direct transformation, fol-

lowed by a reflection in the symmetry line of the two circles, and a
rotation around the origin of the isometric circle of the inverse trans-
formation. In the nonloxodromic case only the first two operations

have to be applied. Three illustrative examples are given: the fist

shows the transformation of the right half of the complex impedance

plane into the unit circle (Smith Chart); the second gives a circular

geometric proof of the Weissfloch transformer theorem; the third

shows an example of cascading, Iossless, two t erminal-pair networks.

INTRODUCT1ON

I N THE SOLUTION of microwave transmission

problems, impedance transformations are usually

carried out either in the complex impedance (ad-

mittance) plane or in the complex reflection coefficient

plane. If notations are introduced in accordance with

Fig. 1, the input voltage and current are given in terms
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Fig. l—An arbitrary two terminal-pair network.

of the output voltage and current by the transforma-

tion equation

V’=aV+bI

}I’=cV+dI ‘

or in matrix notation by

(3=(2(3

(1)

(2)

In a bilateral, two terminal-pair network the determi-

nant of the transformation matrix is identically equal

to unity:

aJ—bG -=1. (3)

If we let

~// )r

—=Z’
I’

v
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=Z
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(4)
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we obtain

aZ+b
Zf = ad —bc=l.

cZ+d)
(5)

This is a linear fractional transformation (also called

homographic or bilinear) between the impedances Z

and Z’.

The properties of transformation (5) are well

known.1 ,Z The properties that characterize transforma-

tions and lead to their classification are usually the in-

variant. This transformation (5) which conformably

transforms the entire complex plane into itself, is charac-

terized by the invariance of the cross ratio, the fixed

points, and the isometric circles. The first two of these

have found application in the microwave field but the

last one seems to have been completely neglected. In

this introductory paper it will be shown that the iso-

metric circles are useful and convenient. The method

will be applied to some specific examples.

THE ISOMETRIC CIRCLES

To find the complete locus of points in the neighbor-

hood of which lengths are unaltered in magnitude by

the transformation (5), it is only necessary

the derivative

dZ’ 1

z= (cZ+d)2’
ad —bc=l.

The desired locus is clearly the circle

\,z+d\ =1, c#o

to study

(6)

(7)

which is called the isometric circle of the direct trans-

formation. Eq. (6) shows that lengths are increased in

magnitude within the circle and decreased in magnitude

without the circle.

If we solve (5) for Z we get the inverse transforma-

tion

–dZ’+b
z= ) ad — bc=l (8)

cZ—a

which has the corresponding isometric circle

lcZ-a[ =1, (9)

The isometric circle of the direct transformation, Cd,

has its center at 0~ = – (d/c) and radius R.= 1/ ] c I ; the

isometric circle of the inverse transformation has its

center at Oi = a/c and the same radius.

1 K. Knopp, “Elemente der Funktionentheorie, ” Sammlung
Goschen, Band 1109, Berlin; 1949.

2 L. R. Ford, “Automorphic Functions, ” 2nd ed., Chelsea Pub-
lishing Co., New York, N. Y.; 1951.
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THE RELATIONSHIP BETWEEN THE ISOMETRIC

CIRCLES AND THE FIXED POINTS

OF THE TRANSFORMATION

The points that are unchanged by transformation (5),

the fixed points, are easily obtained by letting Z’= Z,

and solving the equation

cZ2–(a —d)Z–b =0. (lo)

The roots are

a—d*<(a+d)2–4
tl, {2 = —> ad – bc = 1. (11)

2G

At this point, it is helpful to review the classification

of different types of transformation, which can be

found in works on the theory of functions.1’2

If a+d is real and I a+dl >2, (11) has two real roots.

A pure stretching is obtained and the transformation is

called hyperbolic.

If a+d is real and ] a+dl :=2, (11) has one root (or

two coalescing roots). A pure translation is obtained

and the transformation is called parabolic.

If a+d is real and [a+dl <<2, (11) has two complex

conjugate roots. A pure rotation is obtained and the

transformation is called elliptic.

If, finally, a-t-d is complex, (11) has two complex

roots. A combined stretching and rotation is obtained

and the transformation, which can be split into a hyper-

bolic transformation followed by an elliptic one, or

vice versa, is called ioxodrotnic.

In accordance with the results of the previous section

the distance between the cerlters of the two isometric

circles is ] (a +d)/c \ , while the sum of the two radii is

2/I c 1. Therefore, if we follow the classification given

above, we get the hyperbolic case if the two circles are

external: the parabolic case, if they are tangent: and

the elliptic case, if they intersect. (See Figs. 2–4.) In

the Ioxodromic transformation each circle may have any

relation to the other. The positions of the fixed points

in relation to the isometric circles can now be obtained

easily from (11). The fixed points are marked as crosses

in Figs. 2, 3, and 4.

THE GRAPHICAL METHOD

In the theory of functions (5) is usually

the following way:

1
—

divided in

z’ .:.&_, ad –bc=l. (12)

G

The following operations, suggested by (12), are then

usually performed in the complex Z plane (see Fig. 5

on the following page):

1) a translation, Z, =2+ (d/c);

2) a complex inversion, Z1.ZZ = 1/] c12;

3) a rotation around the origin through the angle

– 2q5G, giving 23;

L

Transformations

e
2C
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Fig. 2—The hyperbolic case.

Fig. 3—The parabolic case.

Fig. 4—The elliptic case.
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L was introduced by Feldtkeller4 who bases his method on

I the positions of the so-called oscillation impedances

Fig. 5—Graphical interpretation of the linear
fractional transformation.

4) a projection through the origin (a rotation around

the origin through the angle T), giving 24;

5) a translation, Z’= (a/c) +ZA

If we now draw, as in Fig. 5, the two isometric circles

Cd and C, that have the same radius R,= 1/ ] c I and the

centers od = — (d/c) and 0;= a/c, the transformation

Z*Z’ can be simplified and the following operations

performed: An inversion in the isometric circle cd of the

direct transformation, giving ZI; a reflection in the

symmetry line L of the two circles, giving ZII; and a

rotation around the center Oi of the isometric circle of

the inverse transformation through an angle – 24.

From Fig. 5 it follows immediately that

+=4–4. (13)

or

a+d
—= a+d - & (14)

G — .

Thus in the general Ioxodromic case the transformation

(5) can be obtained by an inversion in the isometric

circle of the direct transformation, followed by a re-

flection in the symmetry line L, and, finally, a rotation

around the center of the isometric circle of the inverse

transformation through an angle – 2 arg (a +d). In the

nonIoxodromic cases, when a +d is real, only the first

two operations have to be applied; the same result is

obtained by a reflection in L followed by an inversion in

the isometric circle of the inverse transformation. This

theorem was proved by Ford,2 but he followed a differ-

ent line of thought in his proof. He then used the iso-

metric circle to study fundamental regions belonging to

linear groups in the theory of automorphic functions.

In network theory graphical inversion methods have

been used for symmetric networks, as for example, by

Konig 3 An interesting graphical interpretation of (5)

3 H. Konig, “~er die Abhang@eit des Scheinwiderstaudes eines
symmetrjschen Vierpols von der Bela stung, Helu. Pkys. Ada, vol. 4,
pp. 281–289; 1931.

(Schwingwiderstande) which are defined as the roots of

the equation

aZ+b
–z=—.

cZ+d
(15)

This method, however, is restricted to linear, symmetric

networks (a= d).

APPLICATIONS

Transformation of the Right Half of the Complex Im-

Pedance Plane in the Unit Circle (Smith Chart)

In order to fulfill the condition in (3), that ad – bc = 1,

the well-known formula for transforming the right half

of the complex impedance plane in the unit circle, has

to be written in the following way:

21
—— —

~= 42 d? aZ+b
—— ad — bc = 1.

2,1
(16)

cZ+d;

Thus, referring to Fig. 6,

I
jx

R

L

Fig. 6—Transformation of the right half of the complex
impedance plane into the unit circle.

d
Od=– —=–l

G

0$=:=1 (17)
c

a+d=~~= real.

The transformation is clearly nonloxodromic and

elliptic, since a +d is real and the isometric circles inter-

A R. Feldtkeller, “Einfiihrung in die Vierpoltheorie der elektri-
schen Nachrichtentechnik, ” S. Hirzel Verlag, Leipzig; 1948.
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sect. The fixed points are -tJ. Thus I’ is simply ob-

tained from an arbitrary Z by inverting in Cd and re-

flecting in L, the imaginary axis. The imaginary axis is

mapped on the unit circle; the right half plane falls in-

side the circle. The constant — R and constant — X

lines are transformed in two sets of orthogonal circles

through the point +1. The diagram inside the unit

circle is the familiar Smith Chart with r defined as the

reflection coefficient. An inverse transformation I’~Z

is simply obtained by inverting in Ci and reflecting in L,

If the different planes are stereographically mapped on

a Riemann sphere, the transformation constitutes a

900-rotation around an axis through the fixed points.

The transformation between the Z plane and the r

plane mentioned above was recently- treated by de

Buhr.5 He used the C; circle :as the inversion circle but

he did not realize that this circle is one of the isometric

circles; nor did he see that his graphical construction is

a SpeCial CaSe Of a mOre gellerd One.

A New Proof of the Weissjioch Transformer Theorem for

Lossless Two Terminal-Pai~ Networks

Weissfloch’s transformer theorem states that for a

given frequency any lossless two terminal-pair network

can be converted into an ideal transformer by coupling

specific lengths of homogeneous transmission lines to

each side of the network. The theorem was originally

proved by Weiss flochG in the complex impedance plane.

A proof in the complex reflection coefficient plane was

recently given by Weiss floch7 and by Lueg. 8 It was also

proved graphically by Van Slooten,g who used the Cay-

ley-Klein diagram (Van Slooten calls it “Cayley-dia-

gram” or “C-diagram”). A new, extremely simple, proof

will now be given by means of the isometric circles.

Any impedance transformation through a Iossless

two terminal-pair network leaves the imaginary axis in-

variant in the complex plane and the unit circle in-

variant in the complex reflection coefficient plane. All

transformations of this kind that have a common fixed

circle the interior of which is transformed into itself,

are said to belong to a properly discontinuous group

called Fuchsian.z The fixed circle mentioned is called

the principal circle. One theoremz states that the iso-

metric circles of the transformations of a Fuchsian

group are orthogonal to the principal circle. In Fig. 7

the lossless network is represented by the isometric

circles cd and C~, both cutting the principal circle per-

5 T. de Buhr. “Eine neue Methode zur Bearbeituwz linearer Vier-
pole,i FT2, pp. 200-204; April, 1955.

e A Welssfloch, “Ein Transform ationssatz uber verlustlose Vier-
pole und seine Anwendung auf die experimentelle Untersuchung
von Dezimeter—und zentimeterw,ellen—Schaltungen,” llo~h~~. il.
Elak., vol. 60, pp. 67-73; September? 1942.

7 A. Weissfloch, “Kreisgeometrlsche Vierpoltheorie und ihre
Bedeutung fi.ir Messtechnik und Schaltungstheorie des Dezimeter—
und Zentimeterw-ellengebietes, “ Hochfr. u. Elak., vol. 61, pp. 100-123;
1943.

8 H. Lueg, “~ber die Transformat ionseigenschaften verlust-
Ioser Vierpole zwischen homogenen [.eitungen und ein kreisgeornetris-
cher Beweis des R’eissfloch-schen Transforrnatorsatze s,” AEU, vol.
7, pp. 478-484; 1953.

g V. Van Slooten, “Meetkundige Beschouwingen in Verband met
de ‘1’heorle der Electrische Vierpolen, ” Thesis, Delft, 1946.
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Fig. 7—The isometric circles of an arbitrary, lossless,
two terminal-pair network.

pendicularly. The network is elliptic, since the circles

intersect. The fixed points are marked as crosses. If the

circles are separated, the fixed points will coalesce in

the tangential case and then continue along the princi-

pal circle in the external case. These are the parabolic

and the hyperbolic cases. Since the ideal transformer

has its fixed points at f 1, we shall try to findl a method

for moving the fixed points of Fig. 7~0 to these positions.

A transformation by means of a lossless,, homogeneous

transmission line constitutes a rcltation arou]ld the ori-

gin in the r plane. The isometric circles are straight

lines through the origin. With the notations of Fig. 8

r’ r2 rl r

Fig. 8—.%I arbitrary, lossless, two terminal-pair network between
two homogeneous, lossless transmission lines.

we can write

1? = 112e–i+ (20)

The arbitrary lossless two terminal-pair network has the

centers of its isometric circles at Od = -- (Z/C) and ~,

=A/C, both having the radius Rc = 1/] Cl . Eqs. (18) and

(19) give

Ae–~L~/jjr + ~eYj(@/2)
J72 =

Ce-i(dlz)r + ~e+i(#/z~
(21)

having isometric-circle centers at Od’ = -– (~-/C)e~d and

0,’ = A /C with radii R,. Thus the isometric circle of the

direct transformation is rotated through an angle +0,

while the isometric circle of the inverse transformation

is invariant.

10Figs. 7and 9 should be reflected, so that * l+T 1.
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Eqs. (19) and (20) give

.4e–~t~/2JI’l + Ce–jf’J’/2J
r) =

ce+~(tlz)rl + ~e+~(t/Z)
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(22)

having isometric-circle centers at Oa” = –~/C and Oi”

= (A /C)e-~* with radii R.. Thus the isometric circle of the

direct transformation is invariant, while the isometric

circle of the inverse transformation is rotated through

an angle — #.

The transmission lines clearly move the fixed points

of Fig. 7 to the points ~ 1. The lengths of the trans-

mission lines are hj5/4T and h#/47r, where h is the wave-

length. Thus an ideal transformer is obtained and the

Weissfloch transformer theorem is proved. If the ideal

transformer is represented by

to the point 1? on the unit circle is transformed in I?l.

If another network exactly equal to the first one is

coupled in series, the new reflection coefficient I’z is ob-

tained at the input by the same operations, inverting in

Cd and reflecting in L, as were performed before. For a

set of equal networks the reflection coefficients 171-, I’Z,

r3, r4, . . . are obtained. It is seen in Fig. 10 that the

transformations correspond to a (non-Euclidean) rota-

tion around the fixed point, which checks with the fact

that all transformations are elliptic. Similar construc-

tions can easily be performed in the parabolic and the

z’ = kz (23)

it can easily be proved that the connection between the

radius R. and the impedance transformation ratio k is

2
R. = . I

(24)

TO illustrate this proof given above, a transformation of

an arbitrary reflection coefficient r, representing, for

the sake of simplicity, a reactance, through the ideal

transformer is shown in Fig. 9. Here the transformations L

(-t
.\

Oi ,-ci L r-PLANE

&

cj,~

cd

o
Cij+

cd, TRANSF.

L+, L+

I /!A — - cd,+

m--F\
I cd,+

Fig. 9—A circular geometric proof of the Weissfloch transformer
theorem using the isometric circles.

performed by the transmission line of length hq5/47r, the

arbitrary, Iossless network, and the transmission line of

length h@/47r, are shown to give the same reflection

coefficient I” as the one obtained by a transformation

through the ideal transformer.

Cascaditig of a Set of Eqaal Lossless Two Tenninal-

Pair NetwoYks

In Fig. 10 an arbitrary, Iossless, two terminal-pair

network is represented by the isometric circles cd and

C~ in the 17 plane. An arbitrary reactance corresponding

hyperbolic cases.

ANE

Fig. 10—Transformation through a set of equal, lossless, two
terminal-pair networks.

Besides the use of the isometric circle method for im-

pedance transformations, as shown above, the method

can also be applied to transformation of polarization

rat ios,ll
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